Gemetric / Gemetric Plus
Caractéristiques principales
- Acrylate hydrophobe sans glistening ², ⁷, ⁸, ⁹, ¹⁰, ¹¹, ¹², ¹³, ¹⁴, ¹⁵
- Les bords texturés de l’optique permettent de réduire la dysphotopsie ⁵
- Risque de PCO (Posterior Capsular Opacification) réduit grâce aux bords carrés ⁵
- Haptiques rugueuses ⁵
- Diamètre extérieur de l’extrémité avant de l’injecteur 1.70 mm
- Transparence à long terme, basé sur des tests in vitro ¹⁴
- Plus de 90% d'indépendance visuelle ²
Vers l`indépendance visuelle
Vivinex Gemetric Plus permet une très bonne vision de loin, une bonne vision intermédiaire et une excellente vision de près.
Les deux designs Gemetric peuvent être adaptés en fonction des préférences des patients pour la vision de loin ou de près.

Une large couverture visuelle grâce au pairing

Plus de 90% d`indépendance visuelle

References:
2. HOYA data on file. CTM-23-029, HOYA Medical Singapore, Pte. Ltd, 2023
3. HOYA (2022): Vivinex Gemetric Testimonial Video E. Mertens, Video on file, 2022_05_31_05_HSOE_XY1-G_XY1-GP_XY1-GT_XY1-GPT_VD_EN_EMertens
4. Schartmueller, D. et al. (2019): True rotational stability of a single-piece hydrophobic intraocular lens. In: The British journal of ophthalmology 103 (2), p. 186–190.
5. Pérez-Merino, P.; Marcos, S. (2018): Effect of intraocular lens decentration on image quality tested in a custom model eye. In: Journal of cataract and refractive surgery 44 (7), p. 889–896.
6. Tandogan, T. et al. (2021): In-vitro glistening formation in six different foldable hydrophobic intraocular lenses. In BMC Ophthalmol 21, 126.
7. Miyata, A. et al. (2001): Clinical and experimental observation of glistening in acrylic intraocular lenses. In: Japanese journal of ophthalmology 45 (6), p. 564–569.
8. Auffarth et al. (2023) Randomized multicenter trial to assess posterior capsule opacification and glistenings in two hydrophobic acrylic intraocular lenses. Sci Rep 13, 2822.
9. Leydolt, C. et al. (2020): Posterior capsule opacification with two hydrophobic acrylic intraocular lenses: 3-year results of a randomized trial. In: American journal of ophthalmology 217 (9), p. 224-231.
10. Giacinto, C. et al. (2019): Surface properties of commercially available hydrophobic acrylic intraocular lenses: Comparative study. In: Journal of cataract and refractive surgery 45 (9), p. 1330–1334.
11. Werner, L. et al. (2019): Evaluation of clarity characteristics in a new hydrophobic acrylic IOL in comparison to commercially available IOLs. In: Journal of cataract and refractive surgery 45 (10), p. 1490–1497.
12. Matsushima, H. et al. (2006): Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification. In: Journal of cataract and refractive surgery 32 (6), p. 1035–1040.
13. Farukhi, A. et al. (2015): Evaluation of uveal and capsule biocompatibility of a single-piece hydrophobic acrylic intraocular lens with ultraviolet-ozone treatment on the posterior surface. In: Journal of cataract and refractive surgery 41 (5), p. 1081–1087.
14. Eldred, J. et al. (2019): An In Vitro Human Lens Capsular Bag Model Adopting a Graded Culture Regime to Assess Putative Impact of IOLs on PCO Formation. In: Investigative ophthalmology & visual science 60 (1), p. 113–122.
15. Nanavaty, M. et al. (2019): Edge profile of commercially available square-edged intraocular lenses: Part 2. In: Journal of cataract and refractive surgery 45 (6), p. 847–853.
16. HOYA data on file. DoF-SERT-102-MULT-03052018, HOYA Medical Singapore Pte. Ltd, 2018
17. HOYA (2022): Vivinex Gemetric Testimonial Video R. Khoramnia, Video on file, 2022_05_31_05_HSOE_XY1-G_XY1-GP_XY1-GT_XY1-GPT_VD_EN_RKhoramnia
18. Abulafia, A. et al. (2016): New regression formula for toric intraocular lens calculations. In: Journal of cataract and refractive surgery 42 (5), p. 663–671.
19. HOYA data on file. HOYA Medical Singapore, 2020. 20. Based on an average pseudophakic human eye.